♥SEMANA 11 JUEVES:♥
EQUIPO ♥¿Qué determina las propiedades de los compuestos del carbono? Enlaces del Carbono♥
1♥
Los enlaces del carbono con el hidrógeno (C-H), también son enlaces de tipo covalente, siendo éstos sumamente abundantes entre los compuestos orgánicos. Estos enlaces junto a los enlaces C-C, forman los conocidos hidrocarburos, dividiéndose éstos en alcanos, alquenos, alquinos e hidrocarburos aromáticos.
Los enlaces simples son de tipo sigma (enlace σ), siendo este el más fuerte de los enlaces covalentes, y se encuentran formados por un orbital híbrido de los átomos de carbono del enlace.
Los átomos de carbono al enlazarse también pueden formar enlaces dobles (alquenos), formados por orbitales híbridos sp^2 y dos p.
En cambio los enlaces triples (alquinos), formados por un orbital híbrido sp y dos p de cada uno de los átomos.
2♥ Los compuestos de carbono no tienen un carácter iónico; por ello, los enlaces tienen un marcado carácter covalente.
Los enlaces covalentes son enlaces bastante fuertes y difíciles de romper. Por este motivo, las reacciones en las que intervienen compuestos de carbono son, en general, lentas; y a menudo necesitan la presencia de catalizadores para que la reacción se produzca a un ritmo apreciable (y en muchos casos, elevadas temperaturas.)
Otra propiedad importantísima desde el punto de vista práctico es la capacidad energética de los hidrocarburos.
Estructura electrónica del carbono
Al átomo de carbono con número atómico 6 le corresponde la configuración electrónica:
1 s 2 2 s 2 2 p 2
Siguiendo el principio de máxima multiplicidad de Hund podemos representar la configuración como:
1s 2s 2p
esta configuración justifica una covalencia 2 para el carbono. A pesar de esto, el carbono sólo presenta la covalencia 2 en el monóxido de carbono y en un grupo de compuestos conocidos como isonitrilos.
El carbono, de ordinario, presenta covalencia 4, y ello no es explicable por la configuración que presenta en estado normal. De hecho, lo que sucede es que al formarse los enlaces, uno de los dos electrones 2s capta energía y es promocionado al orbital 2pz en el subnivel 2p.
1s 2s 2p
px py pz
átomo de carbono en estado normal
Energía
1s 2s 2p
px py pz
átomo de carbono en estado excitado
Este tipo de hibridación se da en los casos de formación de doble enlace: carbono-carbono, por ejemplo, en la molécula de etileno: .
El átomo de carbono aún puede sufrir otro tipo de hibridación, la hibridación digonal sp. Como indica su nombre, en ella intervienen un orbital s (el 2s) y otro p (el 2py). En esta ocasión los orbitales híbridos se disponen alineados formando ángulos de 180°, y dirigidos según el eje OY. Los orbitales 2px y 2pz que no intervienen en la hibridación conservan su forma y posición.
hibridación
Este tipo de hibridación se da en los casos de formación de triple enlace: carbono-carbono, por ejemplo, en la molécula de acetileno: . En el triple enlace carbono-carbono, uno de los enlaces es un enlace (2sp-2sp) y los otros dos son enlaces (2px-2px y 2pz-2pz).
El enlace triple es aún más reactivo que el doble enlace debido a la presencia de los dos enlaces .
3♥ El átomo de carbono, debido a su configuración electrónica, presenta una importante capacidad de combinación. Los átomos de carbono pueden unirse entre sí formando estructuras complejas y enlazarse a átomos o grupos de átomos que confieren a las moléculas resultantes propiedades específicas. Parece ser que no hay límites al número de estructuras diferentes que el carbono puede formar. Para añadirle complejidad a la química orgánica, átomos de carbono vecinos pueden formar enlaces dobles o triples adicionalmente a los enlaces de carbono-carbono:
Enlace sencillo Enlace doble Enlace triple
4♥ Los compuestos de carbono no tienen un carácter iónico; por ello, los enlaces tienen un marcado carácter covalente.
Los enlaces covalentes son enlaces bastante fuertes y difíciles de romper. Por este motivo, las reacciones en las que intervienen compuestos de carbono son, en general, lentas; y a menudo necesitan la presencia de catalizadores para que la reacción se produzca a un ritmo apreciable (y en muchos casos, elevadas temperaturas.)
Otra propiedad importantísima desde el punto de vista práctico es la capacidad energética de los hidrocarburos. En las reacciones de combustión se genera una gran cantidad de energía. Como productos de desecho se obtiene siempre dióxido de carbono y agua. Observa algunas reacciones:
• Metano: CH4 + 2 O2 ⇒ CO2 + 2 H2O + energía
• Etano: 2 C2H6 + 7 O2 ⇒ 4 CO2 + 6 H2O + energía
• Butano: 2 C4H10 + 13 O2 ⇒ 8 CO2 + 10 H2O + energía
El gas natural o el petróleo, por ejemplo, están formados por una mezcla de hidrocarburos.
Un enlace carbono-carbono es un enlace covalente entre dos átomos de carbono.1 La forma más común es el enlace simple - un enlace compuesto por dos electrones, uno de cada uno de los dos átomos. El enlace simple carbono-carbono es un enlace sigma y se forma entre un orbital híbrido de cada uno de los átomos de carbono. En el etano, los orbitales son sp3, pero también pueden existir enlaces simples formados por átomos de carbono con otras hibridaciones (por ejemplo, sp2 a sp2). En efecto, los átomos de carbono en el enlace simple no necesitan ser de la misma hibridación. Los átomos de carbono también pueden formar enlace doble, constituyendo alquenos, o enlace triple, en alquinos. Un enlace doble está formado con un orbital híbrido sp2 y un orbital p que no está involucrado en la hibridación. Un enlace triple está formado con un orbital híbrido sp y dos orbitales p de cada átomo.
5 Más aún, presenta una gran afinidad para enlazarse químicamente con otros átomos pequeños, incluyendo otros átomos de carbono con los que puede formar largas cadenas, y su pequeño radio atómico le permite formar enlaces múltiples. Un enlace carbono-carbono es un enlace covalente entre dos átomos de carbono.1 La forma más común es el enlace simple - un enlace compuesto por dos electrones, uno de cada uno de los dos átomos.
6♥ El carbono tiene propiedades químicas que lo hacen muy importante para los seres vivos. Por ejemplo, puede unir sus átomos para formar largas cadenas que, a su vez, son los componentes básicos de las sustancias orgánicas, como el caso de las proteínas, las grasas y los azúcares. El carbono es tan importante que hay una rama de la química que se encarga de estudiar los compuestos de cadenas largas y cortas que forma este elemento: la química orgánica. Todas las biomoléculas se basan en los átomos de carbono para formar su estructura.
Al átomo de carbono con número atómico 6 le corresponde la configuración electrónica:
1 s 2 2 s 2 2 p 2
El carbono, de ordinario, presenta covalencia 4, y ello no es explicable por la configuración que presenta en estado normal. De hecho, lo que sucede es que al formarse los enlaces, uno de los dos electrones 2s capta energía y es promocionado al orbital 2pz en el subnivel 2p.
ACTIVIDAD MODELOS MOLECULARES DE LOS COMPUESTOS DEL CARBONO♥
Enlace sencillo Enlace doble Enlace triple Metanol
Material: Modelos moleculares de plástico.
Procedimiento:
-Cada equipo formará el modelo molecular del metano, etano, propano, butano y pentano.
-Formaran los derivados de la familia de los alquenos, alquinos y alcoholes.
Compuesto Modelo escrito Modelo esquemático Modelo físico
Metano Tiene un carbono y 4 Hidrógenos
Etano Tiene dos carbonos y 6 Hidrógenos
Propano Tiene 3 carbonos y 8 Hidrógenos.
Butano Tiene cuatro carbonos y 10 Hidrógenos.
Pentano Tiene cinco carbonos y 12 Hidrógenos.
Eteno Tiene dos carbonos y 4 Hidrógenos y un doble enlace.
Propeno Tiene tres carbonos y 6 Hidrógenos y un doble enlace.
buteno Tiene 4 carbonos y 8 Hidrógenos y un doble enlace.
penteno Tiene 5 carbonos y 10 hidrogenos un doble enlace
etino Tiene 2 carbonos y 2 hidrogenos y un enlace triple
Propino Tiene 3 carbonos y 4 hidrogenos y un enlace triple
Butino Tiene 4 carbonos y 5 hidrogenos y un enlace triple
pentino Tiene 5 carbonos y 8 hidrogenos y un enlace triple
Metanol Tiene 1 carbono 4 hidrógenos y 1 oxígeno
etanol 2 carbonos 1oxígeno
6 hidrogenos
propanol 3 carbonos 8 hidrogenos 1 oxigeno
butanol 4 carbonos 10 hidrogenos 1 oxigeno
pentanol 5 carbonos
6 hidrogenos 1oxígeno CH3CH2CH2CH2CH2OH
♥RECAPITULACION 11♥
El día martes realizamos un experimento con alcohol, acetona, ácido sulfúrico, entre otros, viendo su fórmula, color, olor y textura. Después al hacer una mezcla de alcohol, ácido sulfúrico y acético y ponerlo en ebullición vimos su cambio de olor.
El día jueves cada equipo pasó a escribir sobre el carbono y sus derivados de él, como los alcanos (etano, butano, metano, etc.) entre otros. Viendo el contenido de hidrógenos, carbonos y oxígenos. También hicimos modelos físicos de alcanos, alquenos, alquinos y alcoholes.
♥INDAGACIONES♥
♥Esterificación: Se denomina esterificación al proceso por el cual se sintetiza un éster. Un éster es un compuesto derivado formalmente de la reacción química entre un ácido carboxílico y un alcohol.
Comúnmente cuando se habla de ésteres se hace alusión a los ésteres de ácidos carboxílicos, substancias cuya estructura es R-COOR', donde R y R' son grupos alquilo. Sin embargo, se pueden formar en principio ésteres de prácticamente todos los oxácidos inorgánicos
♥Alquenos
Los alquenos son hidrocarburos que tienen un doble enlace carbono = carbono (C=C) en su estructura.
Nomenclatura de los Alquenos:
* La cadena principal es la que tiene mayor número de dobles enlaces.
* Se empiezan a contar los localizadores de forma que el número que asignemos al enlace sea el menor.
* Se nombran igual que los alcanos sustituyendo el sufijo -ano por -eno indicando el localizador del doble enlace.
♥Las amidas son compuestos que se pueden considerar derivados de los ácidos al sustituir su grupo -OH por el grupo -NH2. La característica fundamental de las amidas es la unión del nítrógeno al carbono del grupo carbonilo en sustitución del grupo -OH del ácido.
Las amidas se clasifican como pimarias (RCONH2), secundarias (RCONHCOR) y terciarias (RCONCORCOR).
♥Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo.[1] Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).
♥Los alquinos se nombran sustituyendo la terminación -ano del alcano por -ino. El alquino más pequeño es el etino o acetileno. Se elige como cadena principal la más larga que contenga el triple enlace y se numera de modo que este tome el localizador más bajo posible.
Estructura y enlace en alquinos
El triple enlace está compuesto por dos enlaces π perpendiculares entre si, formados por orbitales p no hibridados y un enlace sigma formado por hibridos sp.
IMAGENES DE EXPERIMENTO**
Leonor.Saludos, queda registrado, favor de incluir texto a las fotos.Gracias.
ResponderEliminarProf. Agustín